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FIG. 7. One-pion-exchange diagrams leading to 
the three charge states under study. 

appears in marked contrast to the high-energy K+ data.1 

This can be easily understood because (a) the threshold 
for the K*N* final state is approximately at 1.7 BeV/c 

and (b) the charge states available here are not as favor­
able to K*N* production as in the K+p interactions, if 
we think of the K*N* final state being produced through 
the OPE diagram, which appears to be the case for K+p 
interactions.1 The relative suppression of various charge 
states is illustrated in Fig. 7 where we show the lowest-
order Feynman diagrams for the reactions in question. 
The number next to each vertex represents the relative 
strength of that vertex as compared with the corre­
sponding vertex for the K+p —> K+TT~~TT+P reaction. We 
assume dominance of T = 1/2 state for the KT interac­
tion and of T=3/2 for wN interaction. 
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It is shown that a unitarity relation holds for vertex functions in a form analogous to the one for form fac­
tors and that the one-particle irreducible parts of scattering amplitudes satisfy unitarity by themselves. The 
second half of the present work considers the case of nonrelativistic S-wave scattering with one bound state. 
Interrelations among the 5 matrix, the denominator function, and functions for the bound state, such as the 
form factor, the propagator, and the vertex function are discussed under certain general restrictions. 

1. INTRODUCTION 

TH E S-matrix theory of strong interactions con­
siders physical quantities on the mass shell. By 

contrast, most fundamental in the Green's function 
approach are such functions as propagators and vertex 
functions which require knowledge of quantities off 
the mass shell. The connection between the two 
approaches has not been well understood, although it 
would be very desirable to see if an 5-matrix theory 
could incorporate any new principle which is absent 
in Green's function theory. In some processes, such as 
electron-nucleon scattering and weak decay of strongly 
interacting particles, it becomes necessary to know 
about form factors. In ^-matrix theory a link between 
scattering amplitudes and form factors is provided by 
the unitarity relation for the latter, although its 

* This work was supported by the U. S. Office of Naval Research, 
f On leave of absence from Department of Nuclear Science. 

Kyoto University, Kyoto, Japan. 

solutions are known to have the ambiguity of Omnes. 
S-matrix theory does not directly deal with propa­

gators and vertex functions, but the single-dispersion 
parts in Mandelstam's representation for scattering 
amplitudes are closely related to them. Because of their 
importance it seems worthwhile to ask to what extent 
an S matrix can determine these functions. The main 
purpose of the present work is to study the problem 
for the case of nonrelativistic scattering under certain 
general restrictions. Properties of the form factor, the 
propagator, and the vertex function for a bound state 
are also discussed. I t will be seen that there exists 
some kind of correspondence between the scattering 
amplitude and its one-particle irreducible part and 
between the form factor and the vertex function. 

We shall begin with a relativistic case. After a brief 
summary in Sec. 2 of the main properties of a propa­
gator and a vertex function, it is shown in Sec. 3 that 
a unitarity relation holds for the pion vertex functions 



B500 M A S A K U N I I D A 

in a form analogous to the one for the pion form factors. 
I t is also shown that the one-particle irreducible parts 
of the full scattering amplitudes satisfy the unitarity 
relation by themselves. 

In the remaining sections we shall discuss non-
relativistic S-wave scattering with one bound state. 
In Sec. 4 we discuss how to construct the denominator 
function from the phase shift. We also derive a general 
effective-range formula, which may be useful for 
phenomenological analysis. These are discussed under 
the requirement that the 5 matrix have a pole with a 
positive residue at the point corresponding to the 
bound-state energy. 

In the last section we study the problem of construct­
ing the form factor, the propagator, and the vertex 
function of the bound state from the denominator 
function. Levinson's theorem is assumed and the 
Omnes ambiguity is discarded. I t is shown that one 
free parameter enters in1 due to the inevitability of a 
CDD pole.2 This pole does not correspond to an elemen­
tary particle, contrary to what is frequently said about 
CDD poles. Finally we discuss whether the phase of 
the one-particle irreducible part of the full amplitude 
can determine the binding energy and/or the coupling 
constant of the bound state. Our answer is negative. 
In a certain case, however, we can determine one of the 
two parameters when the other is known. Explicit 
examples to illustrate the discussion of Sec. 5 are given 
in the Appendix. 

2. SUMMARY OF LSZ's RESULTS 

For later convenience and for fixing our notation we 
summarize the main results of Lehmann3 and of 
Lehmann-Symanzik-Zimmermann4 (LSZ). The pion 
propagator can be represented under general conditions 
as 

i i r °V) 
iAF'(s) = -—+- / ds', (2.1) 

jjf — S TT J <jp* S —S — t€ 

with the spectral function given by 

a(s)^K+9K/(s-»2)2. (2.2) 

K(s) stands for the matrix elements of the pion source 
operator between the vacuum state and states which 
can be produced by a virtual pion, and g(s) is the 
phase-volume factor. We define a function related to 
the pion renormalization constant by 

Z„~\s)^AF'(s)/AF{s) 

-2 <•» erOO 
7dsf. (2.3) 

9M2 sf — s—ie 
= 1-

1 We cannot, however, exclude the possibility that a knowledge 
of the phase shifts in other angular momentum states may 
uniquely determine the parameter. 

2 L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101, 
453 (1955). 

3 H . Lehmann, Nuovo Cimento 11, 342 (1954). 
4 H . Lehmann, K. Symanzik, and W. Zimmermann, Nuovo 

Cimento 2, 425 (1955). 

As the propagator is a Herglotz function,2 ZT(s) can 
be expressed as 

^-M2 r K( / ) |v( / ) 
Z*(s) = l+ / ds' 

7r J9M2 S — s—ie 

+ ( * - M 2 ) Z - ^ , (2.4) 
n Sn — S 

where cn>0, sn>fx2, and there can be at most one such 
pole in the interval j u 2 0 < 9 / A We find 

f r+er 1 
ImZT(s) = (s—M2) hx X) cj(s—sn) , (2.5) 

(*-M2 )2 

where 
r(s)^Zr(s)K(s). (2.6) 

Taking the limit s—* <*>, we obtain the sum rule 

l r°° r + p r 
l = K m Z T U ) + - / ds+Zcn. (2.7) 

Since we know that 

IT J9fx*(s — M 2 ) 2 

l > l i m Z T ^ ) > 0 

and all the cn'$ are nonnegative, we obtain LSZ's 
inequality 

l r r+or 
1 > - / -ds. (2.8) 

Since we have 

where 

W Q M 2 (S — M2)2 

s / 4w2\1/2 

PNN{S)^—( 1 

we are led to write 

1 T00 ^NN 2PNN 

1 > - / ds. I r 
7T J 4n '4m* {S — jJL2)2 

From this it follows that 

lim TNN(S) = 0. 

(2.9) 

(2.10) 

(2.H) 

3. THE UNITARITY RELATION FOR 
VERTEX FUNCTIONS 

The scattering amplitude T defined from the S 
matrix by 

S=l+2ij,1'2T<>1/2 (3.1) 

satisfies the unitarity relation 

(ImT) i y= (T+eT) iy (3.2) 

for the center-of-mass energy ^ larger than its respective 
physical threshold Sij. By the physical threshold Si 
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for the state i we mean the square of the sum of the 
rest masses of the particles in the state. Sij is then given 
by the larger of Si and sj. We confine ourselves only to 
states which can be produced by a virtual pion, and we 
choose 9 so as to be identical with the phase-volume 
factor which appeared in the expression, (2.2), for the 
pion propagator. The form factor, K(s), satisfies the 
unitarity relation 

( I m K ) ^ (T+eK)4.= (K+pT),- (3.3) 

for s larger than its respective physical threshold s^ 
We shall derive a unitarity relation, analogous to 

Eq. (3.3), for the vertex function r(s) defined by Eq. 
(2.6). For the imaginary part of Ti(s) we have 

ImTi(s) = Im[_Z7r(s)Ki(s)'] 

= ZT(s) ImKi(s)+Ki*(s) ImZv(s). 

We note here that if Z7r~
1(s) has a simple zero at a 

point larger than s^ then its imaginary part and, hence, 
Ki(s), should vanish at the same point. I\(s) can thus 
have no poles for s>Si, and we need not take into 
account possible CDD poles of Zir(s) when we consider 
ImTi(^) for s>Si. From Eqs. (3.3) and (2.5) it follows 
that 

ir+^r) 

K T + - r ^ *(s) 
r+Jer 

If we put 

T=riAFTT+U, 

for s>Si. 

(3.4) 

where TT stands for the transposed matrix of r , we can 
write 

I m r , = (U + pr ) i , for s>Si. (3.5) 

I t is easy to see that we also have 

Imr<=(r*-pU)<, for s>Si. (3.5') 

I t is to be noted here that our argument given above 
does not forbid Ti(s) from having poles for s<Si. As 
for the pion-nucleon vertex TNN(S), for instance, we 
have seen that it can have no poles for s>4w 2 . I t has 
no poles for s<p? when the Lehman n representation for 
the pion propagator holds without subtraction. How­
ever, it could have poles at the points in the interval 
/x2<s<4w2 , at which the pion propagator vanishes. 

The first term in the expression (3.4) for the full 
amplitude T is equal to the Born contribution with all 
the radiative corrections included. The second term 
U is what is sometimes called the one-particle irre­
ducible part of the full amplitude.5 In order to show 
that U satisfies the unitarity relation by itself, we 

6 K. Symanzik, Lectures in Theoretical Physics (Federal Nuclear 
Energy Commission of Yugoslavia, Belgrade, 1961), p. 485. 

rewrite both sides of Eq. (3.4): 

I m T = I m U + I m 
r z 

r -
L. /X! ?,**] 

ZT-X ( K + e K ) 
=imU+imr rT+ r* rT 

1 , 2 — < (S -M 2 ) 2 

z ~x* 
+r*——imrT, 

( Z - 1 * v / z ~x \ 

U++ r*-^—r+ W U+ T-^—TT ) 
M2—s I \ n2—s I 

Z,-* (K+pK) 
= U+eU+ (U+er) r y + r* rT U-M2)2 

z —1* 
+ r*^— ir+9U). 

From Eqs. (3.2), (3.5), and (3.5)r it thus follows that 

(ImU)tv=(U+pU)<y, for s>sij. (3.6) 

This kind of unitarity relation was first noted by 
Blankenbecler et al.Q for the case of nonrelativistic 
potential scattering when no subtraction is necessary 
with respect to the momentum transfer variable in the 
Mandelstam representation for the scattering ampli­
tude. I t should be emphasized that in our derivation of 
Eqs. (3.5) and (3.6) we have used expressions only for 
the imaginary parts of Ki(s), Zv~

1(s). Therefore, our 
results are independent from possible necessity of 
subtractions for these functions. 

As an example of an application of our results, we 
consider the elastic scattering of a nucleon-antinucleon 
pair in the x5o state with isotopic spin one. The unitarity 
relations, (3.2) and (3.6), give an upper limit on 
| TNN(S) I and | UMN(S) \, respectively. We find 

\TNN(S)\PNN(S)<1 , 

| UNN(S)\PNN(S)<1, 

(3.7) 

(3.70 

for 5>4w2 , where PNN(S) has been given by Eq. (2.9). 
Since 

Zv-\s) 
TNN{S)— TNR(S) = TNN(S) — UNW(S) , 

it follows from the inequalities (3.7) and (3.7)' that 
for s >4w 2 we have 

| TNN{s) IV | Zr(s) | - (s-p?) | TV*(*)~ UNN(S) I 

2 ( S - M 2 ) 1 - ( M 2 A ) 
< — = 1 6 T T -

PNN(S) [ l - (4m 2 A)] 1/2 

6 R. Blankenbecler, M. L. Goldberger, N. N. Khuri, and S. B. 
Treiman, Ann. Phys. (N. Y.) 10, 62 (1960). 
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If we introduce a vertex-renormalization function it follows that 

ZNN(S)^YNN(S)/TNN(IJL2) , (3.8) 

where 
IV*G*2)^v2g, (3.9) 

the above inequality becomes 

\ZAs)\ g2 ll-&n*/s)Ji* 
> 

\ZMs)\2 &r l - 0 u 2 A ) 

When s goes to infinity, we find 

for s>im2. (3.10) 

hm > — . (3.11) 

As another application, we discuss decay of the ir 
meson into a lepton pair through weak interaction. 
The weak form factor Kw(s), which was written as 
F(s) in a previous work,7 satisfies the unitarity relation 

ImKw(s) = Tw+9K, for s > V , (3.12) 

where Tw is the scattering amplitude from an initial 
lepton pair to final states of strongly interacting 
particles. By an argument similar to that used to 
derive Eq. (3.5), we find the unitarity relation for the 
weak vertex, 

ImTw(s) = \Jw
+

&r, for s > V , (3.13) 

where the weak vertex is defined by 

T^s^Z^K^s), (3.14) 

and Uw is the one-particle irreducible part of Tw; 
that is, 

T w = r i A F
/ r w + U w . (3.15) 

In general, one must add delta functions to the right-
hand side of Eq. (3.13) corresponding to possible poles 
of Tw(s) because the argument which excluded poles 
of Ti(s) for s>Si cannot be used in this case. In order 
to avoid such poles, Tw(s) was divided in the previous 
work into two parts in a somewhat different way: 

F 1 

j l l2 — S S 

where F is the decay constant defined by 

F^KW(»2). 

(3.16) 

The poles at s=0 are of kinematical origin. From Eqs. 
(3.15) and (3.16) and from 

I W ) = F -
I m r „ ( / ) 

-s—ie) 
•dsf, (3.18) 

1 1 r00 I m r w ( / ) 
-L teU) = U „ U ) - K - / —ds'- (3-19) 
s 7r JgM

2 {s'—fi2){s' — s—ie) 

When the pion-renormalization constant vanishes, the 
assumption of no subtraction for Kw(s) led us to the 
requirement 

U+0K 
F = lim- . (3.20) 

s^ K+pK 

Equation (3.20) can also be expressed as 

since we have 

sVw+9K 
lim = 0 , 
— K+eK 

1 r™ ImTw{s) 
F = - / ds. 

(3.21) 

(3.22) 
? r y 9M

2 S —M 

The implication of Eq. (3.20) has been studied by 
Nishijima8 more explicitly for a simplified model. 

4. THE S MATRIX AND THE DENOMINATOR 
FUNCTION 

Because of the many-body character of the relativistic 
scattering problem, it seems very difficult to investigate 
it without a drastic approximation. In the remainder 
of the present work we shall deal with the much simpler 
case of nonrelativistic scattering, which will enable us 
to discuss some questions untouched in the previous 
section. 

For simplicity, we consider the 5-wave scattering 
of two spinless particles, which we call "nucleons," 
with one bound state. Our problem is to construct such 
functions as the denominator function, the form factor, 
the propagator, and the vertex function when the 
•S-wave phase shift is given. I t has long been known that 
the phase shift of an angular momentum state cannot 
uniquely determine the denominator function, or the 
Jost function, when there is a bound state in the same 
angular momentum state.9'10 Our problem should then 
be to study whether, and if possible how, we can reduce 
ambiguities under general restrictive conditions. We 
begin with the denominator function. 

According to van Kampen10 and Omnes,11 the 
denominator function is expressed as 

(3.17) D(s) = C(s+sB) 

Xexp 
L ir Jo (s' 

5{s')ds' 

(s/+sB)(s'—s—i€)J 
(4.1) 

7 M. Ida, Phys. Rev. 132, 401 (1963). 

8 K. Nishijima, Phys. Rev. 133, B1092 (1964). 
9 R. Jost, Helv. Phvs. Acta 20, 256 (1947). 
10 N. G. van Kampen, Phil. Mag. 42, 851 (1951). 
11R. Omnes, Nuovo Cimento 8, 316 (1958). 
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where s denotes the center-of-mass momentum squared 
and SB^MB, with B the binding energy. The phase 
shift is normalized so that 8 (0) = 0, and C is a constant. 

Since the S matrix can be written in the form 

S(s) = D"(s)/D(s), (4.2) 

where D!I(s) stands for the denominator function in 
the unphysical sheet, it would not have a pole at 
s~ — SB if Dn(s) should vanish at the same point. A 
state corresponding to the "lost pole" cannot be 
regarded as a bound state of the nucleons, for its wave 
function vanishes identically. In order to exclude this 
kind of "neutral" interaction we require tha t : 

(I) the 5 matrix have a pole at s= — SB. 

Thus, the exponential factor of Eq. (4.1), or the Omnes 
integral, should have a pole at s= — SB when analytic­
ally continued into the unphysical sheet. In addition to 
this pole it may have other poles in the unphysical 
sheet, which make redundant poles12 in S(s). We then 
present the second restriction: 

(II) the residue G2 of the pole of S (s) 

at s= —SB be positive. 

When there is only one pole in S(s) with a positive 
residue, (II) is enough to single out a bound-state pole. 
If there are more than one with positive residues, each 
of them is eligible to be a bound-state pole. 

I t should be noted here that analytic continuation 
of D(s) into the unphysical sheet cannot be performed 
unless the phase shift is given by means of an analytic 
expression. When the phase shift is known approxi­
mately, one can determine the binding energy with 
some confidence only for the case of a loosely bound 
state. The well-known correlation in this case of the 
low-energy behavior of the phase shift with SB and G2 

will be discussed in a way more general than is usually 
done. 
f^From what we have seen under the restriction (I), 
it follows that D(s) should be written in the form 

D(s) = lsB
ll2+is1'2T^ (s)+isll2B(s)~], (4.3) 

where both A (s) and B (s) are real on the positive real 
axis, and their left-hand singularities cancel each other 
for D(s). We thus find 

S{s)-
sB

ll2-is112 sB
ll2-isll2<p{s) 

SBll2+islf2sB
1,2+isll2cp{s)' 

where the function <p (s) is defined by 

<p(s)=SBlt2B(s)/A(s), 

(4.4) 

(4.5) 

and is real for s>0. We have normalized the coupling 
constant G so that the scattering amplitude 

r ( 5 ) = ( l / 2 w 1 ' 2 ) [ 5 W - l ] (4.6) 

has a pole at S=—SB of the form G 2 / ( — S B ~ S ) . From 
Eq. (4.4) we find 

l+<p{—sB) 
G2 = 2SB112 , (4.7) 

l—<p{—sB) 

and the restriction (II) now becomes 

(110 \<P(-SB)\<1. (4.8) 

I t is now easy to express the phase shift in terms of 
SB and <p(s). The phase shift can most conveniently 
be written in the form 

SB112 <p(s) S 
s112 cot5 \,s) = 1 , (4.9) 

l+<p(s) 1+<P(S)SB112 

which is reminiscent of the ordinary effective-range 
formula, 

1 r 
s1'2cot8(s)=~+~s, (4.10) 

a 2 

From Eq. (4.9), <p(s) can be written as 

s+sB 
<p(s) = 

S—SB1I2S cotd(s) 
— 1. (4.11) 

By calculating the differential coefficient of <p(s) at 
s = 0 , we find 

-~+-SB = SB1I2\ i i f 
a 2 [ a2 ds J 

1 M0) l 
1+ , (4. 12) 

where a and r are now defined as the coefficient of the 
effective-range expansion, 

1 r 
sll2cot8(s) = —t—H . 

a 2 

Thus, the condition 

dcp(0)/ds = 0 

is equivalent to the familiar relation13 

1 r 
—+-SB = SB

lI2. 
a 2 

(4.100 

(4.13) 

(4.14) 

From Eq. (4.9) we see that the scattering length 
can be expressed as 

a=-(l+^)Ai»1 /a , (4.15) 

where <p==£>(0). When Eq. (4.13) holds, the effective 
range is given by 

r=[2^/( l+^)]( lA^ 2 ) . (4.16) 

12 S. T. Ma, Phys. Rev. 69, 668 (1946); 71, 195 (1947). 

13 J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics 
(John Wiley & §ons, Inc., New York, 1952), Chap. 2. 
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It follows that 

• 2 r / a = W ( l + ^ , (4.17) 

and that 0 < - (2r/a)<l for <p>0 and - (2r/a)<0 for 
<^<0. <p thus has two real roots. One is smaller than 
unity in the absolute magnitude, and the other larger. 
Under Eq. (4.13) and the assumption of a small binding 
energy, <p(s) is almost constant in the interval 0>s 
> — sB, and we may discard the root larger in absolute 
magnitude by the requirement (4.8). The scattering 
length and the effective range can then uniquely 
determine p and, hence, SB. The coupling constant G2 

is obtained by replacing v(—sB) in Eq. (4.7) with <p.u 

For the 35i n-p scattering we find in this way that 

J^-1(*U)-' 
1/2 

-0.25, 

l/sB
ll2^a/(l+<p)~4:.3 F , (or B=sB/mc^2.2 MeV), 

which is to be compared with the experimental value 
of B, 2.226 MeV, and 

G 2 / m - 2 [ ( l + ^ ) / ( l - ^ ) ] ( 5 / w ) 1 / 2 ^ 0 . 1 6 . 

The good agreement for B and Eq. (4.12) indicate that 
l*>'(0)|«a2. 

If the pole of the S matrix moves downward through 
the origin along the imaginary axis of the k plane, where 
k=s112, it no longer represents a bound state, but 
corresponds to a virtual state. When SZI(s) has a pole 
at s= — sv, an expression analogous to Eq. (4.9) is 
obtained by replacing sB

112 in Eq. (4.9) with — sv
1/2: 

sl'2cotb(s) = 
sv 

.1/2 <P{s) 

l+<p(s) l+<p(s)sv112 
(4.18) 

Equation (4.17) is still true when Eq. (4.13) holds. For 
the x5 0 n-p scattering we find in a way similar to that 
for 3Si n-p scattering that 

^ - G + O + K T * - 1 ) - 1 } 1 ^ - 0 - 0 5 ' 
l/sv

ll2=a/(l+ <p)~25 F (or sv/mc^67 keV). 

The sign of the scattering length discards one of the 
two roots for p. 

Recently Geshkenbein and Ioffe15 (GI) obtained an 
interesting upper bound on coupling constants, under 
the assumption that vertex functions have no poles. 

14 Incidentally, the coefficient N of the asymptotic form of the 
normalized radial wave function for a loosely bound state, 

« ( | r | ) ->^-^i/2|rf, as | r | - * °o, 

is approximately given by iV2~2si?1/2[l - (^)1/V]~1. (See Ref. 13, 
Chap. 12.) By substituting Eq. (4.16) into the above expression 
and comparing it with Eq. (4.7), we are led to the familiar result, 

15 B. V. Geshkenbein and B. L. Ioffe, Phys. Rev. Letters 11, 
55 (1963). 

In the nonrelativistic case their bound is given by16 

G2<4:SB
112. (4.19) 

I t can also be expressed in terms of the function <p (s) as 

* ( - * * ) < * . (4.20) 

We see that the constant <p for the 3Si n-p scattering is 
smaller than | . In other words, the deuteron coupling 
constant satisfies the GI bound15 : 

G2/m<4:(B/m)li2==0A9. 

I t should be emphasized, however, that the GI bound 
is a necessary, but not sufficient, condition for the 
vertex function to have no poles. Indeed, in the non­
relativistic models the vertex for a bound state must 
have a pole under certain general conditions. 

5. THE FORM FACTOR, THE PROPAGATOR, 
AND THE VERTEX FUNCTION 

We next study the form factor, the propagator, and 
the vertex function when the denominator function is 
known. From the unitarity relation (3.3) for K(s), 
its phase is given by 5(s). We restrict ourselves to the 
case in which 

(III) K(s) and ZB~l(s) have no poles. 

We do not require that T(s) and ZB{s) have no poles. 
The reason for this is simply that in field theory the 
functions corresponding to the former are expressed 
as matrix elements of Heisenberg operators, while those 
corresponding to the latter are not. K(s) can now be 
written in the form 

K(s) = GP(s)exp\ / — 
L 7T J o (S • 

5(sf)ds' 

(s'+SB)(s'—s—ie). 
(5.1) 

where P(s) is an arbitrary polynomial normalized so 
that P ( — S B ) = 1. From (I) it follows that Ku(s) has a 
zero at S=—SB- Z B - 1 ( J ) is denned, in analogy to Eq. 
(2.3), by 

S+SB r \K(s')\2{s'yi2ds' 
\s) = l-

IT J o (V (s'+sB)2(s'-s-u) 
(5.2) 

except for further subtractions, if necessary. 
In order to fix the asymptotic behavior of the phase 

shift, we also require that : 
(IV) the phase shift satisfy Levinson's theorem.17 

Since we are concerned with the case of one bound 
state and the phase shift is normalized by 5(0) = 0, it 
follows from (IV) that 5(s) tends to —ir as s—> oo. 
The exponential factor in Eq. (5.1) increases linearly 
with s, apart from a possible logarithmic factor and 

16 C. J. Goebel and B. Sakita, Phys. Rev. Letters 11, 293 
(1963). 

17 N. Levinson, Kgl. Danske Videnskab. Selskab, Mat. Fys. 
Medd. 25, No. 9 (1949). 
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Eq. (5.2) requires at least one more subtraction. Here 
we confine ourselves to the simplest solution by further 
requiring that : 

(V) K (s) have no zeros; 

that is, P(s) = l. Equation (5.2) should now be replaced 
by 

(s+sB)2 

ZB-i(s) = l-d(s+sB) 
IT 

r \K(sf)\2(sfyi2ds' 
X / , (5.3) 

Jo (sf+sBy(s'-s-ie) 

where d is an arbitrary constant. The vertex function is 
then given by 

T(s) = K(s)/ZB-i(s), (5.4) 

and the phase of U(s) is, by Eq. (3.5), equal to that of 
T(s). T(s) has no zeros because of the conditions (V) 
and (III). We also note that ZB~1(s) increases like sm 

and r (s) decreases like s~112, again apart from possible 
logarithmic factors, as s goes to infinity. 

We have seen that we have one free parameter d in 
determining the propagator and the vertex function 
from the denominator function under our restrictive 
conditions. This situation may be related to the well-
known ambiguity18-20 one encounters in determining 
the potential from the denominator function when 
there is a bound state. 

Equation (5.3) means that the Lehmann represen­
tation for the propagator needs one subtraction16: 

1 s+sB 
iAF'(s) = +d+ 

— SB — S T 

r \K(s')\
2(s'yi2ds' 

X . (5.5) 
Jo (s'+sB)2(s'-s-ie) 

The subtraction should be made at a finite point, in 
spite of a contrary statement in Ref. 16. The propa­
gator still is a Herglotz function, and since it tends to 
— co as s goes to —- oo it must have a zero below — sB. 
We call its position — si, where si>sB. I t follows that 
r (s) has a pole at this point and, hence, the one-particle 
reducible part of T(s) or the first term of Eq. (3.4) 
does too. Thus, the one-particle irreducible part, U(s), 
should have a pole at the same point to cancel the 
pole of the one-particle reducible part unless the zero 
of the propagator happens to coincide with a redundant 
pole of S(s). I t is to be mentioned that the CDD zero 
at s = —si is inevitable and has nothing to do with the 
introduction of an elementary particle. Since d is 
determined when si is given, we may regard si as a 

18 V. Bargmann, Rev. Mod. Phys. 21, 488 (1949). 
1 9 1 . M. Gel'fand and B. M. Levitan, Doklady Akad. Nauk 

SSSR 77, 55 (1951). 
20 R. Jost and W. Kohn, Phys. Rev. 87, 977 (1952). 

free parameter to represent the ambiguity we have 
encountered. 

For completeness we shall discuss the case in which 
there is an elementary particle coupled to the S-wave 
channel. Applying Levinson's theorem to this case,21 

we find that the phase shift tends to zero as s —» co. 
Therefore, K(s) becomes constant at infinity and the 
Lehmann representation for the propagator needs no 
subtraction. We also note that the renormalization 
constant is nonvanishing because 

i r i#u)l2*1/2 

lim ZB~\s) = 1 + - / ds< co . (5.6) 
ir Jo (S+SB)2 

Thus, for the simplest solution, in which K(s) has 
neither zeros nor poles, ZB~l{s) and T (s) can be uniquely 
determined from the denominator. Since T(s) has no 
poles, G2 should satisfy the GI bound (4.19). 

Finally we consider the inverse problem of construct­
ing the vertex function, the propagator, and the form 
factor, when the phase r}(s) of the function U(s) is 
given. This has been discussed in a different context 
by Blankenbecler et al.6 We encounter various am­
biguities similar to those we had before. We shall 
consider only the cases in which the restrictions (III) 
to (V) are satisfied. Therefore, T(s) has at least one 
pole but no zeros. When r)(s), normalized by 77(0) = 0, 
tends to — (l/2+n)w as s goes to infinity, where n is a 
nonnegative integer, T(s) can be expressed in the form 

G s±—sB 

ru)=— 
Qn(S) Si+S 

\S+sB r " rj<,sf)ds' -| 
Xexp / . (5.7) 

L 7r Jo (sf+sB)(s,—s—ie)J 

Here Qn(s) is an arbitrary polynomial of order n which 
has at most one zero in the interval, — sB<s<0, and 
no zeros for s<—sB, and is normalized to unity at 
s=—sB. 

The relation between rj(s) and —si is similar to the 
one between 8(s) and —sB. In Sec. 4 we could narrow 
the possibilities by (I) and (II), but here we do not 
have any physically plausible reason to make corre­
sponding restrictions. If U(s) has a pole or poles, one 
may choose one of them as —Si. If this is the case, si 
can be regarded as essentially given by rj(s). Of course, 
one need not do so. U(s) may even have no poles. 
Then, —Si is completely independent of r](s). 

Let us confine ourselves to the solution with as small 
a number of arbitrary parameters as possible, and 
assume hereafter that — Si is the only pole of T(s) or 
Qn(s) = l. From this assumption and (V) it follows 
that ZB{s) has no CDD poles other than the one at 

21 See, for instance, M. Ida, Progr. Theoret. Phys. (Kyoto) 21, 
625 (1959). 
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s=—Si. ZB(S) can now be written as 

ZB\s) = 
1 r00 |: 

TTJQ (V 

r(*')IV)1/2<fc' SI-SB 

(S'+SB) (s'—s—ie) Si+s 

From the normalization condition we have 

•c. (5.8) 

1 = ZB(—SB) = -=7 
•K Jo 

|r(*)|Vs<k 

o (s+sB)2 
(5.9) 

which is a nonrelativistic analog of Eq. (2.7). Since we 
know that ZB(s) decreases like s~312 for large s, we 
also get 

1 r \T(s)\2sll2ds 
(SI-SB)C^ . (5.10) 

s+sB 

By substituting Eq. (5.10) into Eq. (5.9), we obtain22 

| r(*)|V2<fc 1 1 r \T(s)\W*ds 
1 

1 r 
7T Jo ( ^ + ^ ) 2 ^1 — ̂ 5 

i r 

IT Jo S+SB 

l r°°(*i+*)|r($)|V'2 

7T J o ( ^ i — ^ ) ( ^ + ^ B ) 2 
-^ . (5.11) 

The form factor is now given by K(S) = T(S)/ZB(S). 
The sum rule, (5.11), establishes a relation among 

SB, G2, and si. We are thus led to the conclusion that 
either SB or G2 can be chosen independently from rj(s), 
when — ̂ i is a pole of U (s) and, hence, can be regarded 
as essentially given by TJ (S) and when V (s) has no poles 
other than —Si. If Si is independent from rj(s), then 
both SB and G2 can be given arbitrarily. Our procedure 
discussed above corresponds to that of Blankenbecler 
et aL% The inevitable introduction of one CDD pole, 
however, has made our result different from theirs. The 
difference comes from our requirement that Levinson's 
theorem be satisfied. 

Some simple but explicit examples given in the 
Appendix will serve to illustrate the discussions in this 
section. 
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APPENDIX 

Simple examples are given here to facilitate the 
understanding of the general discussion of Sec. 5. 

Let us consider S-wave scattering with one bound 
state, the phase shift of which is exactly given by the 
effective-range formula, (4.10). By Levinson's theorem, 
the scattering length a and the effective-range r must 

22 This LSZ sum rule should not be identified with the one 
obtained from the normalization of the wave function for a bound 
state. For the latter sum rule, see S. Weinberg, Phys. Rev. 130, 
776 (1963). 

have opposite signs. The function <p(s) is a constant in 
our model and we see that it is positive. Therefore, a 
and r must be such that a<0, r>0 and —a/2r> 1. The 
constant <p is given by 

* = • 1 -
r AT- 1 )" 1 

-,1/2 

< 1 . 

We then have 

sj»=(l+<p)/\a\, 

G2=2sBv*(l+<p)/(l-<p). 

If we put 

where S2>SR, the S matrix is expressed as 

O B 1 / 2 - M 1 / 2 ) ( > 2 1 / 2 - M 1 / 2 ) 
5(5) = -

( 5 B 1 / 2 + M 1 / 2 ) ( 5 2 1 / 2 + M 1 / 2 ) 

(Al) 

(A2) 

(A3) 

(A4) 

(A5) 

I t has a redundant pole at s= —S2. For the form factor 
given by Eq. (5.1) with P(s) = l, we have 

(sBll*-isli*)(stlii-islis) 
K(s) = G : . 

2sB^{s^+SBm) 

Zs^is) is then given by Eq. (5.3) as 

1 

(A6) 

ZB-Ks) = 
2SB1I2(S2-SB) 

-(.SB^-is^isi+s) 

+ | J L _ ^ _ 
\*Si 

d\(s+sB). (A7) 
Si—SB 

I t has a zero below —SB, which we call —st as before. 
(A7) can then be written as 

ZB-^S)--
(se^-is^is^+is^) 

2SBW(SI1I2-SB112) 

S2S!+ (Si^-SB11*) (5 i 1 / 2 -M 1 / 2 ) 
x . 

S2— SB 

(A8) 

The constant d, or equivalently Si, is quite arbitrary. 
As the S matrix of our model has a redundant pole, 
however, we can fix the constant by making the zero 
of ZB~1{S) coincide with the redundant pole of S(s), 
that is, by putting $1 = ^2. d is then given a unique value: 

d=(l/4sB)-Zl/(s1-sB)l. (A9) 

I t should be emphasized that the only reason to do this 
here is to simplify the solution. ZB~l(s) then becomes 

ZB-KS)-

1 

2SB1I2(SI—SB) 
-{sB^-is^isi+s) (A10) 
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and the vertex function is 

D U N I T A R I T Y R E L A T I O N 

From Eq. (5.2) we find 

B507 

T(s)=G-
5i1/2 + M1/2 

We also find 

U(s)=-l/(si1i*+isii*). 

For the sum rule, (5.11), we have 

CP ,SIIIZ-SBW,2 2SB
W 

G> /sill*-sB
lly 

2 5 B 1 / 2 U 1
I / 2 + 5 J , 1 / V l/2_L_o „l /2 *l1 / 2+*B 

(AH) 

(A12) 

(A13) 

S2W+SB
Ui SB

m-is112 

We thus have 
2sB

m S, W-isW 

U(s)=0. 

The sum rule, (5.11), is 

1 = -
2sB 

1/2 

+ S2W+SBW 2SBW 

(A19) 

(A20) 

(A21) 

where the second term of the right-hand side of (A 13) 
represents the contribution from the CDD pole of the 
propagator. 

When there is an elementary particle coupled to the 
5-wave channel, a and r must have the same sign. The 
constant <p is now negative, and given by 

--(H+[(;+1H" !>~'' (A14) 

Therefore, both a and r must be negative, SB and G2 

are expressed by Eqs. (A2) and (A3), respectively, with 
<p given by (A 14). If we put 

where the first term of the right-hand side cf (A21) 
represents the propagator renormalization constant. 

We finally consider the inverse problem, in which the 
phase 7](s) of U(s) is given by the scattering length 
formula, 

s1'icotii(s) = aQ. (A22) 

From what we have seen in the text, it follows that ao 
must be negative. U (s) is then given by 

U(s) = -l/(\a0\~
1+is^). (A23) 

where S2>SB, the S matrix is 

(A15) 

(sBW-isl'2)(s2
w+isli2) 

S(s)= . (A16) 
( J S 1 ' * + M 1 / S ) ( J 2 1 / S - M 1 ' * ) 

I t has a zero at s— —S2, instead of a redundant pole. 
The form factor is then given by 

K(s) = G-
S^+SB112 SBW-isw 

25B"2 s2
ll2-is i /2_,- , i /2 

(A17) 

As U(s) has a pole at s= ~a0~
2, we choose this point as 

the location of the only pole of T(s)9 just to simplify the 
solution. We call this point — si as before. We thus 
have Si=a<r2, and T(s) is then given by Eq. (Al l ) . 
ZB(S) is easily calculated, by Eq. (5.8), to be 

ZB(s) = 2sBll2(siSB)/(sBlf2-is1'2)(s1+s), (A24) 

and the form factor is given by (A6). The sum rule, 
(5.11), now becomes 

1 = (G2/2SB112) [ (*i1/2~ SB1'2)/ (*i 1 / 2+^ 1 / 2)] 2 

+G 2 (5 i 1 / 2 -^ 1 / 2 ) / (^ i 1 / 2 +^ 1 / 2 ) 2 (A25) 
= (G 2 /2^ 1 / 2 ) [ (5 1

1 / 2 -^ 1 / 2 ) / (^ 1
1 / 2 +^ 1 / 2 ) ] . 

Therefore, it determines G2 only if SB is given. 


